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Taylor diagrams (Taylor, 2001) provide a way of graphically summarizing how closely a pattern 
(or a set of patterns) matches observations.  The similarity between two patterns is quantified in 
terms of their correlation, their centered root-mean-square difference and the amplitude of their 
variations (represented by their standard deviations).  These diagrams are especially useful in 
evaluating multiple aspects of complex models or in gauging the relative skill of many different 
models (e.g., IPCC, 2001).  
 
Figure 1 is a sample Taylor diagram which shows how it can be used to summarize the relative 
skill with which several global climate models simulate the spatial pattern of annual mean 
precipitation.  Statistics for eight models were computed, and a letter was assigned to each model 
considered.  The position of each letter appearing on the plot quantifies how closely that model's 
simulated precipitation pattern matches observations.  Consider model F, for example.  Its 

Figure 1:  Sample Taylor diagram displaying a statistical comparison with observations of eight model estimates 
of the global pattern of annual mean precipitation. 
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pattern correlation with observations is about 0.65.  The centered root-mean-square (RMS) 
difference between the simulated and observed patterns is proportional to the distance to the 
point on the x-axis identified as "observed."  The green contours indicate the RMS values and it 
can be seen that in the case of model F the centered RMS error is about 2.6 mm/day. The 
standard deviation of the simulated pattern is proportional to the radial distance from the origin.  
For model F the standard deviation of the simulated field (about 3.3 mm/day) is clearly greater 
than the observed standard deviation which is indicated by the dashed arc at the observed value 
of 2.9 mm/day. 
 
The relative merits of various models can be inferred from figure 1.  Simulated patterns that 
agree well with observations will lie nearest the point marked "observed" on the x-axis.  These 
models will have relatively high correlation and low RMS errors.  Models lying on the dashed 
arc will have the correct standard deviation (which indicates that the pattern variations are of the 
right amplitude).  In figure 1 it can be seen that models A and C generally agree best with 
observations, each with about the same RMS error.  Model A, however, has a slightly higher 
correlation with observations and has the same standard deviation as the observed, whereas 
model C has too little spatial variability (with a standard deviation of 2.3 mm/day compared to 
the observed value of 2.9 mm/day).  Of the poorer performing models, model E has a low pattern 
correlation, while model D has variations that are much larger than observed, in both cases 
resulting in a relatively large (~3 mm/day) centered RMS error in the precipitation fields.  Note 
also that although models D and B have about the same correlation with observations, model B 
simulates the amplitude of the variations (i.e., the standard deviation) much better than model D, 
and this results in a smaller RMS error. 
 
In general, the Taylor diagram characterizes the statistical relationship between two fields, a 
"test" field (often representing a field simulated by a model) and a "reference" field (usually 
representing “truth”, based on observations).  Note that the means of the fields are subtracted out 
before computing their second-order statistics, so the diagram does not provide information 
about overall biases, but solely characterizes the centered pattern error.   
 
The reason that each point in the two-dimensional space of the Taylor diagram can represent 
three different statistics simultaneously (i.e., the centered RMS difference, the correlation, and 
the standard deviation) is that these statistics are related by the following formula: 
 

RE rfrf σσσσ 2222 −+=′ , 

where R is the correlation coefficient between the test and reference fields, E' is the centered 
RMS difference between the fields, and σf

2 and σr
2 are the variances of the test and reference 

fields, respectively.  (The formulas for calculating these second order statistics are provided at 
the end of this document.) The construction of the diagram (with the correlation given by the 
cosine of the azimuthal angle) is based on the similarity of the above equation and the Law of 
Cosines: 
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There are several minor variations on the diagram that have been found useful for various 
purposes (see, Taylor, 2001).  For example, 
 

• The diagram can be extended to a second "quadrant" (to the left) to allow for negative 
correlations. 

• The statistics can be normalized (and non-dimensionalized), dividing both the RMS 
difference and the standard deviation of the "test" field by the standard deviation of the 
observations.  In this case the "observed" point is plotted on the x-axis at unit distance 
from the origin.  This makes it possible to plot statistics for different fields (with different 
units) on the same plot. 

• The isolines drawn on the sample plot above are often omitted to make it easier to see the 
plotted points. 

• When comparing fields simulated by two different versions of a model, the two points on 
the graph representing those fields are often connected by an arrow to indicate more 
clearly whether or not the model is moving toward "truth," as defined by observations. 

 
Sample diagrams are contained in Taylor_diagram_examples.pdf. 
 
 
Further notes: 
 
Given a "test" field (f) and a reference field (r), the formulas for calculating the correlation 
coefficient (R), the centered RMS difference (E'), and the standard deviations of the "test" field 
(σf) and the reference field (σr) are given below:  
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where the overall mean of a field is indicated by an overbar.  In the case of a time-independent 
field, the sum is computed over all grid cells.  For the typical spatial grid, the grid cell area is not 
uniform, so each grid cell must be weighted by the fraction of the total area represented by that 
grid cell.  In the case of a time varying field, the sum is a double-sum computed over all grid 
cells and all time samples. 
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